The differentiation potential of gingival mesenchymal stem cells induced by apical tooth germ cell-conditioned medium
نویسندگان
چکیده
Gingival-derived mesenchymal stem cells (GMSCs) have recently been harvested; however, the use of GMSCs in periodontal tissue engineering requires further study. The present study established an indirect co‑culture system between rat apical tooth germ‑conditioned medium (APTG‑CM) and GMSCs, in order to determine the effects on periodontal tissue differentiation in vitro and in vivo. Using the limiting dilution technique, single‑colony derived human GMSCs and periodontal ligament stem cells (PDLSCs) were isolated and expanded to obtain homogeneous populations. PDLSCs were used as a positive control group. Cell cycle distribution, alkaline phosphatase (ALP) activity, mineralization behavior, expression of genes associated with a cementoblast phenotype (osteocalcin, bone sialoprotein, ALP, type I collagen, cementum‑derived protein 23), and in vivo differentiation capacities of GMSCs/PDLSCs co‑cultured with APTG‑CM were evaluated. Flow cytometry indicated that GMSCs and PDLSCs were positive for STRO‑1 and CD105, whereas CD45 expression was negative. The cell types were capable of forming colonies, and of osteogenic and adipogenic differentiation in response to appropriate stimuli. The induced GMSCs and PDLSCs exhibited numerous characteristics associated with cementoblast lineages, as indicated by increased proliferation and ALP activity, and upregulated expression of cementum‑associated genes in vitro. In vivo, cementum/periodontal ligament‑like structures were shown to form along the dentin surface and ceramic bovine bone in GMSCs and PDLSCs induced by APTG‑CM group. Conversely, vertical fibers could not insert in the control group, which was not co‑cultured with APTG‑CM. In conclusion, GMSCs are likely to have a role in periodontal tissue regeneration. In addition, APTG‑CM was able to provide a cementogenic microenvironment and promote differentiation of GMSCs along the cementoblastic lineage.
منابع مشابه
Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells
Objective(s): Although many researchers have confirmed induction of germ cells from bone marrow mesenchymal stem cells (BMMSCs), there are no reports that confirm spontaneous differentiation of germ cells from BMMSCs. In this study, we have evaluated the effect of adult Sertoli cell condition medium (SCCM) as a mutative factor in the induction of germ cells from BMMSCs. Materials and Methods: ...
متن کاملThe Effects of Dental Pulp Stem Cell Conditioned Media on the Proliferation of Peripheral Blood Mononuclear Cells
Background: Dental Pulp Stem Cells (DPSCs) are multipotent mesenchymal stem cells. DPSCs can renew themselves and differentiate into various cell types such as adipocytes, osteocytes, neurons, etc. DPSCs possess immunomodulatory properties and can inhibit peripheral blood mononuclear cell (PBMC) proliferation. Recent studies showed that conditioned-medium mesenchymal stem cells also had immunos...
متن کاملتاثیر رتینوئیک اسید در تمایز سلّولهای بنیادی مزانشیمال بافت چربی به سلّولهای زایا
Background: Recent publications regarding the differentiation of stem cells to germ cells have motivated researchers to make new approaches in infertility. In vitro production of germ cells improves the understanding of differentiation process of male and female germ cells. Since using embryonic stem cells for this purpose has been associated with tumorogenesis and ethical criticisms, the men...
متن کاملIsolation and Multiple Differentiation Potential Assessment of Human Gingival Mesenchymal Stem Cells
The aim of this study was to isolate human mesenchymal stem cells (MSCs) from the gingiva (GMSCs) and confirm their multiple differentiation potentials, including the odontogenic lineage. GMSCs, periodontal ligament stem cells (PDLSCs) and dermal stem cells (DSCs) cultures were analyzed for cell shape, cell cycle, colony-forming unit-fibroblast (CFU-F) and stem cell markers. Cells were then ind...
متن کاملInduced Chondrogenic Differentiation of hESCs by hESC-Derived MSCs Conditioned Medium and Sequential 3D-2D Culture System
Background and Aims: It has been proven that human mesenchymal stem cells (MSCs) conditioned medium (hMSCs-CM) can influence human embryonic stem cells (hESCs) chondrogenic differentiation. In this study, we hypothesized that conditioned medium (CM) from hESCs-derived MSCs in a sequential 3D-2D culture system could facilitate the induction of chondrogenesis in hESCs. Materials and Methods: CM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2016